LLM 收到用户问题后,能否精准地回答出知识库中的内容,取决于知识库对内容块的检索和召回效果。匹配与问题相关度高的文本分段对 AI 应用生成准确且全面的回应至关重要。好比在智能客服场景下,仅需帮助 LLM 定位至工具手册的关键章节内容块即可快速得到用户问题的答案,而无需重复分析整个文档。在节省分析过程中所耗费的 Tokens 的同时,提高 AI 应用的问答质量。
与通用模式相比,父子模式采用双层分段结构来平衡检索的精确度和上下文信息,让精准匹配与全面的上下文信息二者兼得。其中,父区块(Parent-chunk)保持较大的文本单位(如段落),提供丰富的上下文信息;子区块(Child-chunk)则是较小的文本单位(如句子),用于精确检索。系统首先通过子区块进行精确检索以确保相关性,然后获取对应的父区块来补充上下文信息,从而在生成响应时既保证准确性又能提供完整的背景信息。你可以通过设置分隔符和最大长度来自定义父子区块的分段方式。例如在 AI 智能客服场景下,用户输入的问题将定位至解决方案文档内某个具体的句子,随后将该句子所在的段落或章节,联同发送至 LLM,补全该问题的完整背景信息,给出更加精准的回答。其基本机制包括: